This guide is a compilation of about fifty of the most important physics formulas to know for the SAT Subject test in physics. (Note that formulas are *not* given on the test.) Each formula row contains a description of the variables or constants that make up the formula, along with a brief explanation of the formula.

		· · · · · · · · · · · · · · · · · · ·
$v_{\rm ave} = \frac{\Delta x}{\Delta t}$	$v_{\text{ave}} = \text{average velocity}$ $\Delta x = \text{displacement}$ $\Delta t = \text{elapsed time}$	The definition of average ve- locity.
$v_{\rm ave} = \frac{(v_{\rm i} + v_{\rm f})}{2}$	$v_{\text{ave}} =$ average velocity $v_{\text{i}} =$ initial velocity $v_{\text{f}} =$ final velocity	Another definition of the average velocity, which works when a is constant.
$a = \frac{\Delta v}{\Delta t}$	a = acceleration $\Delta v = change in velocity$ $\Delta t = elapsed time$	The definition of acceleration.
$\Delta x = v_{\rm i} \Delta t + \frac{1}{2} a (\Delta t)^2$	$\Delta x = \text{displacement}$ $v_{i} = \text{initial velocity}$ $\Delta t = \text{elapsed time}$ $a = \text{acceleration}$	Use this formula when you don't have $v_{\rm f}$.
$\Delta x = v_{\rm f} \Delta t - \frac{1}{2} a (\Delta t)^2$	$\Delta x = \text{displacement}$ $v_{\text{f}} = \text{final velocity}$ $\Delta t = \text{elapsed time}$ a = acceleration	Use this formula when you don't have v_i .

Kinematics

Kinematics (continued)

$v_{\rm f}^2 = v_{\rm i}^2 + 2a\Delta x$	$v_{\rm f} = { m final velocity}$ $v_{\rm i} = { m initial velocity}$ $a = { m acceleration}$ $\Delta x = { m displacement}$	Use this formula when you don't have Δt .
--	---	---

Dynamics

F = ma	F = force m = mass a = acceleration	Newton's Second Law. Here, F is the <i>net</i> force on the mass m .
W = mg	W = weight m = mass g = acceleration due to gravity	The weight of an object with mass m . This is really just Newton's Second Law again.
$f = \mu N$	f = friction force $\mu = $ coefficient of friction N = normal force	The "Physics is Fun" equa- tion. Here, μ can be either the kinetic coefficient of fric- tion μ_k or the static coefficient of friction μ_s .
p = mv	p = momentum m = mass v = velocity	The definition of momentum. It is conserved (constant) if there are no external forces on a system.

Dynamics (continued)

$\Delta p = F \Delta t$	$\Delta p = \text{change}$ in momentum F = applied force $\Delta t = \text{elapsed time}$	$F\Delta t$ is called the <i>impulse</i> .
-------------------------	--	--

Work, Energy,	and	Power
---------------	-----	-------

$W = Fd\cos\theta$ or $W = F_{\parallel}d$	W = work F = force d = distance $\theta = \text{angle between } F$ and the direction of motion $F_{\parallel} = \text{parallel force}$	Work is done when a force is applied to an object as it moves a distance d . F_{\parallel} is the component of F in the direc- tion that the object is moved.
$\mathrm{KE} = \frac{1}{2}mv^2$	$\begin{aligned} \text{KE} &= \text{kinetic energy} \\ m &= \text{mass} \\ v &= \text{velocity} \end{aligned}$	The definition of kinetic energy for a mass m with velocity v .
PE = mgh	PE = potential energy $m = mass$ $g = acceleration due$ to gravity $h = height$	The potential energy for a mass m at a height h above some reference level.

Work, Energy, Power (continued)

$W = \Delta(\text{KE})$	W = work done KE = kinetic energy	The "work-energy" theorem: the work done by the <i>net</i> force on an object equals the change in kinetic energy of the object.
$\mathbf{E} = \mathbf{K}\mathbf{E} + \mathbf{P}\mathbf{E}$	E = total energy KE = kinetic energy PE = potential energy	The definition of total ("me- chanical") energy. If there is no friction, it is conserved (stays constant).
$P = \frac{W}{\Delta t}$	P = power W = work $\Delta t = \text{elapsed time}$	Power is the amount of work done per unit time (i.e., power is the <i>rate</i> at which work is done).

Circular Motion

$a_{\rm c} = \frac{v^2}{r}$	$a_{c} = centripetal acceleration$ v = velocity r = radius	The "centripetal" acceleration for an object moving around in a circle of radius r at veloc- ity v .
$F_{\rm c} = \frac{mv^2}{r}$	$F_{\rm c} = {\rm centripetal\ force}$ $m = {\rm mass}$ $v = {\rm velocity}$ $r = {\rm radius}$	The "centripetal" force that is needed to keep an object of mass m moving around in a circle of radius r at velocity v .

Circular Motion (continued)

$v = \frac{2\pi r}{T}$	v = velocity r = radius T = period	This formula gives the veloc- ity v of an object moving once around a circle of radius r in time T (the period).
$f = \frac{1}{T}$	f = frequency T = period	The frequency is the number of times per second that an object moves around a circle.

Torques and Angular Momentum

$\tau = rF\sin\theta$ or $\tau = rF_{\perp}$	$ au = ext{torque}$ $r = ext{distance (radius)}$ $F = ext{force}$ $ heta = ext{angle between } F$ $ ext{and the lever arm}$ $F_{\perp} = ext{perpendicular force}$	Torque is a force applied at a distance r from the axis of ro- tation. $F_{\perp} = F \sin \theta$ is the component of F perpendicu- lar to the lever arm.
L = mvr	L = angular momentum m = mass v = velocity r = radius	Angular momentum is con- served (i.e., it stays constant) as long as there are no exter- nal torques.

Springs

$F_s = kx$	$F_s = \text{spring force}$ k = spring constant x = spring stretch or compression	"Hooke's Law". The force is opposite to the stretch or com- pression direction.
$PE_s = \frac{1}{2}kx^2$	$ ext{PE}_s = ext{potential energy}$ $k = ext{spring constant}$ $x = ext{amount of}$ $ ext{spring stretch}$ $ ext{or compression}$	The potential energy stored in a spring when it is ei- ther stretched or compressed. Here, $x = 0$ corresponds to the "natural length" of the spring.

Simple Harmonic Motion

$T_s = 2\pi \sqrt{\frac{m}{k}}$	$T_s = \text{period of motion}$ k = spring constant m = attached mass	The period of the simple har- monic motion of a mass m at- tached to an ideal spring with spring constant k .
$T_p = 2\pi \sqrt{\frac{l}{g}}$	$T_p = period of motion$ l = pendulum length g = acceleration due to gravity	The period of the simple har- monic motion of a mass m on an ideal pendulum of length l .

Gravity

$F_g = G \frac{m_1 m_2}{r^2}$	$F_g = $ force of gravity G = a constant $m_1, m_2 = $ masses r = distance of separation	Newton's Law of Gravitation: this formula gives the attrac- tive force between two masses a distance r apart.
-------------------------------	--	--

$F = k \frac{q_1 q_2}{r^2}$	$F = \text{electric force}$ $k = \text{a constant}$ $q_1, q_2 = \text{charges}$ $r = \text{distance of}$ separation	"Coulomb's Law". This for- mula gives the force of attrac- tion or repulsion between two charges a distance r apart.
F = qE	F = electric force $E = electric field$ $q = charge$	A charge q , when placed in an electric field E , will feel a force on it, given by this formula $(q is sometimes called a "test" charge, since it tests the electric field strength).$
$E = k \frac{q}{r^2}$	E = electric field $k = a constant$ $q = charge$ $r = distance of$ separation	This formula gives the elec- tric field due to a charge q at a distance r from the charge. Unlike the "test" charge, the charge q here is actually gen- erating the electric field.

Electric Fields and Forces (continued)

$U_E = k \frac{q_1 q_2}{r}$	$U_E = ext{electric PE}$ $k = ext{a constant}$ $q_1, q_2 = ext{charges}$ $r = ext{distance of}$ separation	This formula gives the electric potential energy for two charges a distance r apart. For more than one pair of charges, use this formula for each pair, then add all the U_E 's.
$\Delta V = \frac{-W_E}{q} = \frac{\Delta U_E}{q}$	$\Delta V = \text{potential difference}$ $W_E = \text{work done by E field}$ $U_E = \text{electric PE}$ $q = \text{charge}$	The potential difference ΔV between two points is defined as the negative of the work done by the electric field per unit charge as charge q moves from one point to the other. Alternately, it is the change in electric potential energy per unit charge.
$V = k \frac{q}{r}$	V = electric potential k = a constant q = charge r = distance of separation	This formula gives the electric potential due to a charge q at a distance r from the charge. For more than one charge, use this formula for each charge, then add all the V's.
$E = \frac{V}{d}$	E = electric field V = voltage d = distance	Between two large plates of metal separated by a distance d which are connected to a battery of voltage V , a uni- form electric field between the plates is set up, as given by this formula.

Circuits

V = IR	V = voltage I = current R = resistance	"Ohm's Law". This law gives the relationship between the battery voltage V , the current I, and the resistance R in a circuit.
--------	--	--

Circuits (continued)

P = IV or $P = V^2/R$ or $P = I^2R$	P = power I = current V = voltage R = resistance	All of these power formulas are equivalent and give the power used in a circuit resistor R. Use the formula that has the quantities that you know.
$R_{\rm s} = R_1 + R_2 + \dots$	$R_{\rm s} = \text{total (series)}$ resistance $R_1 = \text{first resistor}$ $R_2 = \text{second resistor}$ \dots	When resistors are placed end to end, which is called "in se- ries", the effective total resis- tance is just the sum of the in- dividual resistances.
$\frac{1}{R_{\rm p}} =$ $\frac{1}{R_1} + \frac{1}{R_2} + \dots$	$R_{\rm p} = \text{total (parallel)}$ resistance $R_1 = \text{first resistor}$ $R_2 = \text{second resistor}$ \dots	When resistors are placed side by side (or "in parallel"), the effective total resistance is the inverse of the sum of the re- ciprocals of the individual re- sistances (whew!).
q = CV	q = charge C = capacitance V = voltage	This formula is "Ohm's Law" for capacitors. Here, C is a number specific to the capac- itor (like R for resistors), q is the charge on one side of the capacitor, and V is the volt- age across the capacitor.

Magnetic Fields and Forces

$F = ILB\sin\theta$	F = force on a wire I = current in the wire L = length of wire B = external magnetic field $\theta = $ angle between the current direction and the magnetic field	This formula gives the force on a wire carrying current I while immersed in a magnetic field B . Here, θ is the angle between the direction of the current and the direction of the magnetic field (θ is usu- ally 90°, so that the force is F = ILB).
$F = qvB\sin\theta$	$F = \text{force on a charge}$ $q = \text{charge}$ $v = \text{velocity of the charge}$ $B = \text{external magnetic field}$ $\theta = \text{angle between the}$ direction of motion and the magnetic field	The force on a charge q as it travels with velocity v through a magnetic field B is given by this formula. Here, θ is the angle between the direction of the charge's velocity and the direction of the magnetic field $(\theta$ is usually 90°, so that the force is $F = qvB$).

Waves and Optics

$v = \lambda f$	v = wave velocity $\lambda =$ wavelength f = frequency	This formula relates the wave- length and the frequency of a wave to its speed. The for- mula works for both sound and light waves.
$v = \frac{c}{n}$	v = velocity of light c = vacuum light speed n = index of refraction	When light travels through a medium (say, glass), it slows down. This formula gives the speed of light in a medium that has an index of refraction n . Here, $c = 3.0 \times 10^8$ m/s.

Waves and Optics (continued)

$n_1 \sin \theta_1 = n_2 \sin \theta_2$	$n_1 = \text{incident index}$ $\theta_1 = \text{incident angle}$ $n_2 = \text{refracted index}$ $\theta_2 = \text{refracted angle}$	"Snell's Law". When light moves from one medium (say, air) to another (say, glass) with a different index of re- fraction n , it changes direc- tion (refracts). The angles are taken from the normal (per- pendicular).
$\frac{1}{d_{\rm o}} + \frac{1}{d_{\rm i}} = \frac{1}{f}$	$d_{o} = object distance$ $d_{i} = image distance$ f = focal length	This formula works for lenses and mirrors, and relates the focal length, object distance, and image distance.
$m = -\frac{d_{\rm i}}{d_{\rm o}}$	m = magnification $d_i = image distance$ $d_o = object distance$	The magnification m is how much bigger $(m > 1)$ or smaller $(m < 1)$ the image is compared to the object. If m < 0, the image is inverted compared to the object.

Heat and Thermodynamics

$Q = mc\Delta T$	Q = heat added or removed m = mass of substance c = specific heat ΔT = change in temperature	The specific heat c for a sub- stance gives the heat needed to raise the temperature of a mass m of that substance by ΔT degrees. If $\Delta T < 0$, the formula gives the heat that has to be <i>removed</i> to lower the temperature.
------------------	---	---

Heat and Thermodynamics (continued)

Q = ml	Q = heat added or removed m = mass of substance l = specific heat of transformation	When a substance undergoes a change of phase (for exam- ple, when ice melts), the tem- perature doesn't change; how- ever, heat has to be added (ice melting) or removed (water freezing). The specific heat of transformation l is different for each substance.
$\Delta U = Q - W$	$\Delta U = \text{change in}$ internal energy Q = heat added W = work done by the system	The "first law of thermody- namics". The change in inter- nal energy of a system is the heat added minus the work done by the system.
$E_{\rm eng} = \frac{W}{Q_{\rm hot}} \times 100$	$E_{\text{eng}} = \%$ efficiency of the heat engine W = work done by the engine $Q_{\text{hot}} = \text{heat absorbed}$ by the engine	A heat engine essentially con- verts heat into work. The engine does work by absorb- ing heat from a hot reservoir and discarding some heat to a cold reservoir. The formula gives the quality ("efficiency") of the engine.

Pressure and Gases

$P = \frac{F}{A}$	P = pressure F = force A = area	The definition of pressure. P is a force per unit area exerted by a gas or fluid on the walls of the container.
-------------------	---------------------------------------	---

Pressure and Gases (continued)

Modern Physics and Relativity

E = hf	E = photon energy h = a constant f = wave frequency	The energy of a photon is proportional to its wave fre- quency; h is a number called "Planck's constant".
$ ext{KE}_{ ext{max}} = hf - \phi$	$\begin{split} \mathrm{KE}_{\mathrm{max}} &= \mathrm{max} \ \mathrm{kinetic} \ \mathrm{energy} \\ h &= \mathrm{a} \ \mathrm{constant} \\ f &= \mathrm{light} \ \mathrm{frequency} \\ \phi &= \mathrm{work} \ \mathrm{function} \\ & \mathrm{of} \ \mathrm{the} \ \mathrm{metal} \end{split}$	The "photoelectric effect" for- mula. If light of frequency f is shined on a metal with "work function" ϕ , and $hf > \phi$, then electrons are emitted from the metal. The electrons have ki- netic energies no greater than KE _{max} .
$\lambda = \frac{h}{p}$	$\lambda = matter wavelength$ h = a constant p = momentum	A particle can act like a wave with wavelength λ , as given by this formula, if it has momen- tum p . This is called "wave- particle" duality.
$\gamma = \frac{1}{\sqrt{1 - (v/c)^2}}$	γ = the relativistic factor v = speed of moving observer c = speed of light	The relativistic factor γ is the amount by which moving clocks slow down and lengths contract, as seen by an ob- server compared to those of another observer moving at speed v (note that $\gamma \geq 1$).